Skewness of maximum likelihood estimators in dispersion models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The asymptotic variance and skewness of maximum likelihood estimators using Maple †

In 1998, Bowman and Shenton introduced an asymptotic formula for the third central moment of a maximum likelihood estimator θ̂α of the parameter θα, a = 1, 2, . . . , s. From this moment, the asymptotic skewness can be set up using the standard deviation. Clearly, the skewness, measured in this way is location free, and scale free, so that shape is accounted for. The computer program is implemen...

متن کامل

Maximum likelihood estimators and random walks in long memory models

We consider statistical models driven by Gaussian and non-Gaussian self-similar processes with long memory and we construct maximum likelihood estimators (MLE) for the drift parameter. Our approach is based in the non-Gaussian case on the approximation by random walks of the driving noise. We study the asymptotic behavior of the estimators and we give some numerical simulations to illustrate ou...

متن کامل

Corrected Maximum Likelihood Estimators in Linear Heteroskedastic Regression Models*

The linear heteroskedastic regression model, for which the variance of the response is given by a suitable function of a set of linear exogenous variables, is very useful in econometric applications. We derive a simple matrix formula for the n biases of the maximum likelihood estimators of the parameters in the variance of the response, where n is the sample size. These biases are easily obtain...

متن کامل

Maximum Likelihood Estimators in Magnetic Resonance Imaging

Images of the MRI signal intensity are normally constructed by taking the magnitude of the complex-valued data. This results in a biased estimate of the true signal intensity. We consider this as a problem of parameter estimation with a nuisance parameter. Using several standard techniques for this type of problem, we derive a variety of estimators for the MRI signal, some previously published ...

متن کامل

The Convergence of Lossy Maximum Likelihood Estimators

Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2010

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2010.02.007